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A method of calculating eigenvectors by variance minimization is presented. The 
procedure of adjusting sequentially each component of a trial vector is discussed and it 
is shown that variance minimization and the MOR method both generate an approximate 
subspace of the true eigenspace. Procedures to deal with this subspace are given which 
both improve the MOR method and make the method of variance minimization suitable 
for obtaining non-extremal eigenvalues and eigenvectors of matrices with nearly 
degenerate eigenvalues. 

1. INTRODUCTION 

Complete diagonalization of a matrix A with rank N requires about Na multi- 
plications [l] and involves cumbersome transformations when N is large. 

When only a few eigenvectors and eigenvalues are required, it is useful to be 
able to calculate them individually. Also when A is large and sparse, it is desirable 
to restrict operations on A to the following two types: 

1. Scalar product ui = (ai , X) 

where a$ is the ith column of A and X the trial vector. 

2. Matrix-vector product V = (A, X) 

which requires NM multiplications, when A contains M nonzero elements. 

The MOR method [3] operates under these requirements and is capable of efficiently 
giving the extremal eigenvalues and eigenvectors. 

To obtain the other eigenvectors, each (ac , X) must be corrected with a suitable 
linear combination of the ith component of the eigenvectors already generated [3]. 
This implicit deflation has undesirable consequences: 

(1) MOR cannot give conveniently all eigenvectors because the implicit 
deflation will need much work for the intermediate eigenvectors. 

(2) One cannot expect good accuracy for an eigenvector when the previous 
ones have themselves not been computed with equivalent accuracy. 
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It is therefore desirable to seek some property which can be improved without 
any knowledge of the eigenvectors. The variance, w, with respect to X is just such 
a quantity: 

w  = {(AX - AX), (AX - hX)}/(X, X) 3 0 

and X = (X, AX)/(X, X) is the Rayleigh quotient of X, which is extremized in 
MOR. When X is an eigenvector, it follows that w  = 0, and X is the eigenvalue. 
It can be shown that the inequality w  > (h - hJ2 always holds [7], where h, is the 
eigenvalue closest to X. When X, is the only eigenvalue such that 1 h - X, 1 -=c .\/w, 
one can be sure that the smaller w  is, the closer X is to the corresponding eigen- 
vector X, . 

The variance concept has previously been used by Seidel [5], who solves the 
equation AX = Y by minimizing the variance {(AX - Y), (AX - Y)}. In his 
simplest procedure each component of X is adjusted in turn. This method is also 
adopted in MOR and the next step will be to attempt to minimize w  in the same 
way.l 

II. MINIMIZING VARIANCE BY OPTIMALLY ADJUSTING COMPONENTS 

The ith component xi of X is to be changed by a quantity, (II, such that 

Introduce the vector V = AX - AX with ith component u(, and the norm 
r = (X, X). Then the change xi -+ xi + cy. produces the new (primed) values: 

r’ = r + a(2xi + a) 

A’ = h + a(214 + ol(Aii - h)}/r’ 
w’ = (w + 2cuz + a2b)/r’ - (A - h’)2 

with a = (ai, V) - Xui and b = h2 - 2ti,, + (ai, aJ. Instead of solving the 
quartic equation dw’/da = 0, w’ is minimized by interpolating near 01,, , a value for 
01 for which (dw’/da) = 0 + ITI( Hence: 

czo = (xiw - u)/{b - w  - 2(xi2w + 2ui2 - uxJ/r}. 

These equations show that the scalar products (ai, V) and (ai, X) have to be 
evaluated. 

1 The following arguments and speeding procedures can he also applied to the Seidel method 
(unpublished work). 
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The computational effort required by one iteration2 may be twice as great as that 
required in MOR method, which only requires (a, , X). However the present 
method, called W, needs no deflation with respect to the other vectors. 

III. USUAL BEHAVIOUR OF THE COMPONENTS RELAXATION METHODS 

The present work will not concern itself with diagonally dominating [4] matrices 
I Aij 1 < I Aii - Aij I. Instead it is preferred to consider matrices with nearly 
degenerate eigenvalues (N.D.E.). For the eigenvectors with eigenvalues belonging 
to N.D.E. clusters, convergence of MOR method can be very slow [3]. In Table I 

TABLE I 

Matrix and exact Initial vector 
eigenvalue Rayleigh quotient Variance 

Iteration number or 
Rayleigh quotient of 

iteration 200 
with MOR with W 

I 
/ II 

1.977662 1.95652 0.0742 13 49 
N = 20 1.911146 1.83696 0.2560 37 1.911153 

case III 1.801938 1.65074 0.4786 35 1.802015 
1 IV 1.652478 1.41260 0.6557 32 1.652525 

V 1.466104 1.13200 0.8110 32 1.466121 

Aii = 0. 

I 
1 II 

1.994132 1.97826 0.0376 42 1.994121 
N = 40 1.976561 1.91848 0.1347 12 1.976076 

case III 1.947391 1.82609 0.2687 1.947384 1.947353 
2 IV 1.906793 1.70652 0.4149 74 1.906249 

V 1.855005 1.57065 0.5874 83 1.855198 

I 4.270462 4.24383 0.0649 13 38 
N = 20 I II 3 527876 3.49866 0.0764 14 50 

case III 2.940160 2.92373 0.0396 16 59 
3 IV 2.439539 2.40948 0.0415 18 98 

Va 2.026962 1.89708 0.0845 50 2.017525 

Ai< = 3., 2.7,.. 0.3,0.,0.,0 .,.. 

I 4.270462 13 38 
N=40 II 3.527876 14 50 

case III 2.940160 Same as N = 20 16 59 
4 IV 2.439539 18 98 

Va 2.028264 108 2.017895 

a Nearly degenerate with VI. 

B We call “an iteration” a cycle of N steps. The corresponding computational time does not 
depend too much on the procedures which are discussed in this work. 
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TABLE II 

Matrix 2 of 
(50 x 50) Matrix given in section V Table I 

Exact eigenvalue 

Iteration 
Iteration number or X at iteration 100 number 

MOR MOREL W WEL MOREL WEL 

I -0.922401 41 26 -0.904277 31 18 29 

II -0.499910 49 39 -0.499077 64 27 47 

III -0.354915 62 40 -0.250166 140 27 62 

IV 5.736 lo-’ 43 33 3.78 1O-6 51 28 63 

V 3.805 IO+ 71 48 1.18 lo-% 116 30 134 

results are given obtained with MOR and W for 4 matrices with N.D.E. Symmetric 
tridiagonal matrices have been considered with Ai,+, = 1 and Aii = 0 in cases 1 
and 2 or Aii = 3; 2.7; 2.4;...; 0.3; 0.; 0.; O.;... in cases 3 and 4. The matrices are 
small: N = 20 for matrices 1 and 3, or N = 40 for 2 and 4. It was attempted to 
obtain the first 5 eigenvectors fulfilling a convergence criterion of w  < lo-‘. The 
initial trial vectors were deduced from diagonalization of similar matrices with 
N = 10. It can be seen from columns 2 and 3 of Table 1 that the initial X and w  
are good. Yet, columns 4 and 5 indicate that large numbers of iterations are 
required or no convergence is obtained (in this case, the h value at the 200th 
iteration is given). W method always requires more iterations than MOR. 

It was interesting to study the variation of the component of the ith eigenvector 
Xi in the trial vector X (i.e., (Xi , X)/(X, X)) as the iterative procedure progressed. 
In Figs. 1 and 2 the absolute value of the components greater than 0.01 (X, 
excluded) are shown, for matrix 1 and an initial vector 

x = 2x, + 4(X, + x5 + *** X,9). 

Two results are obtained: 1. Eigenvectors with initially zero components are 
introduced into the trial vector. This can be observed in Figs. 1 and 2 most 
noticeably in the cases of X, and X, . This arises since modification of Xi introduces 
into X some weight of ei (the vector with ith component equal to 1 and the rest 
all 0), and consequently some weight of all X, which have a nonzero ith component. 
2. Both W and MOR are inefficient in separating eigenvectors with N.D.E. This 
result appears in Figs. 1 and 2 where it is seen that only the first few eigenvectors 
have large components. 
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FIG. 1. Side components with Wmethod 
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FIG. 2. Side components with M.O.R. 

Let 

x = xi + c E,Xp . 
wi 

For small E*, one obtains: 

h = hi + C l *“(Ap - hi) + O(E3) 
B 
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and 
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1Y = c ED2(h, - x,y + e(@) 

Thus optimization of X or w  is clearly more sensitive to components which 
contribute most to 1 h - hi 1 or w. It follows that when there are several eigenvectors 
with eigenvalues close to the one required, adjustment of each component of X 
in turn will first mix them in, and then only eliminate them slowly. 

When A is almost diagonal, the procedure is more efficient because each ei can 
introduce only a few X, into X, and the separation of eigenvalues is better. 

In conclusion, W and MOR produce an approximate subspace of eigenvectors 
with N.D.E., the dimension of which depends on how much the small components 
X, with a large j X, - hi / contribute to w  or (h - &). 

Procedures designed to extract the required eigenvector from this approximate 
subspace are now discussed. 

IV. EXTRAPOLATION PROCEDURES 

Let X0) and X(l) be the vectors produced by two successive iterations. When one 
adds to X(l) some multiple of (X(l) - X(O)) such that h or w  is optimized, this clearly 
is an extrapolation procedure. However when applied to the above examples, 
poor results are obtained: (X(l) - X(O)) can be considered to be a vector belonging 
to the approximate subspace, and since this subspace is of more than two dimen- 
sions, two vectors are not enough. A multiple extrapolation procedure has therefore 
been tried. Even in this case convincing results were not obtained, since the 
vectors (Xfifl) - Xti)) thus introduced contain large weights of eigenvectors 
unimportant to X(Q. 

It is therefore necessary to investigate other procedures for generating better 
vectors from the approximate subspace. 

V. ITERATED VECTOR METHOD 

Since interest may be centered upon any particular eigenvector, the simplest 
iterated vectors generated by the power method [9] are not used. Instead consider 
the vectors: 

x; x(1’ = AX - $$!$) X;...; X(m) = AX(‘+l’ -*z m-1 (Xc”‘, AX’“-l’) x’“’ 
(X(i), X’i’) * 

These vectors are orthogonal to each other. When one uses the property 
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(Y, AX) = (X, AY), it can be seen that the expression for X(“+l) can be reduced to 

X'"+l, = AX'", _ (x(p,9 m'",) X'p, _ ('(=,, x'p,) 

(X(P), x'=') (X'P-1,, XC"-1,) 
~'~-l, 

These vectors are clearly identical to those proposed by Hestenes and Karush [2] 
or Lanczos [8]. We now look for the linear combination of these (m + 1) vectors 
with the least variance. 

It has proved efficient to calculate the linear combination Y of these (m + 1) 
vectors such that w(X) is minimized, where: 

w(h) = (AY, AY)/(Y, Y) with A = A - h(X) I. 

The solution of this variational problem [6] is given by simple manipulation of 
matrices of rank (m + 1) and the resulting linear combination has almost the least 
variance. 

In the following examples, this procedure is taken to be equivalent to m iterations, 
since the multiplications AX(“) form the main part of the computational effort 
when m < N. 

Subsequently m < 9 and calculations were performed in double precision on 
the IBM 370-165 computer. The complete procedures, called WEL and MOREL, 
contain the following steps: 

(1) A few iterations (usually 10) of MOR or W are performed. When 
convergence is fast, this is the only step required. 

(2) The resulting vector is used to generate m “iterated vectors” and the 
best linear combination is taken as the new trial vector. 

(3) If variance has decreased faster with these m iterations than with m 
cycles one returns to (2). If not, one returns to (1). 

These procedures have been applied to matrix 2 of Table I and to a matrix 

A,=4(N+1-~)(N+1-j)/(2N+2-~-j)2 
where i fj = l,..., N and N = 50. 

Aii = 0; 0.5, 0.5; l., l., 1.; 1.5, 1.5, 1.5, 1.5;... 

Using initial vectors derived from the first five eigenvectors of a similar N = 10 
matrix, it is shown in table II that both WEL and MOREL are much faster than W 
and MOR. 

Of course these matrices have many N.D.E. and in this kind of situation the 
2d Lanczos method [8] may be favoured. But the procedures described here give 
a regular decrease in w, so that they may be tried and then given up if convergence 
is too slow. 
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VI. OBTAINING AN EIGENVECTOR WITH EIGENVALUE CLOSE TO A GIVEN NUMBER 

Given a number k, we wish to derive the eigenvector Xi with smallest possible 
I Xi - k I. It can be shown easily that this eigenvector is the only solution to the 
condition: 

w(k) = {(AX - kX), (AX - kX)}/(X, X) = minimum. 

On the other hand a condition requiring only the proximity of h(X) to k can 
generally be fullfilled with many solutions. 

By analogous reasonings to those presented in Section II, minimization of w(k) 
by adjustment correction of each component xi of X requires correction factors 01 
given by: 

a = (-B + z/B2 - 4AC)/2A with A = xi(ai , ai) - (ai , V), 

B = (X, X)(ai , ai) - (V, V) and C = (ai, V)(X, X) - x@, V). 

The notations are the same as in Section II except V = AX - kX. 
This new procedure, called WK, gives in semi-degenerate situations a linear 

combination of the eigenvectors possessing eigenvalues close to k. Therefore the 
iterated vector procedure outlined in Section V is needed. 

The entire procedure, called WKEL, has been applied to a tridiagonal symmetric 
matrix (N = 900), with Ai,i+l = i and Adi = i when i < 100 or Aii = (i - 90)2 
when i > 100. The eigenvalue closest to 200 and the corresponding eigenvector 
have been sought for. The initial trial vector was very poor (h - 104). When 
submitted to 50 iterations of WKEL, this yelded a better vector (h - 200) which 
was submitted to 400 cycles of WEL. The final h was 202.3457. The matrix is very 
sparse, so that the entire computational time was only about l/1000 of that required 
for complete diagonalization. 

CONCLUSION 

The examples given are all of matrices with near degeneracies (the two exceptions 
being matrices 3 and 4 in Table I). In such cases, neither MOR nor variance 
minimization converges quickly, even when supplemented with the iterated vectors 
procedure. Their main advantage however is that they do not need cumbersome 
transformations of the original matrix. There are many practical situations where 
the matrix is not too far from diagonality and in these case, variance minimization 
has the advantage that it can be used to obtain any eigenvector and not only the 
extremal ones. The versatility of the variance concept is also demonstrated by 
the possibility of obtaining eigenvectors with specific eigenvalue requirements. 



CALCULATION OF EIGENVECTORS 349 

ACKNOWLEDGMENTS 

This work was supported by C.N.R.S., France. 

REFERENCES 

1. E. BODEWIG, “Matrix Calculus,” North-Holland Pub]. Comp., 1959, p. 340. 
2. M. HIZSTENB AND W. KARIJSH, J. Res. Nat. But-. Stand. 47 (1951), 45. 
3. I. SHAVITT, C. BENDER, A. PIPANO AND R. P. HOSTENY, J. Comput. Phys. 11 (1973), 90. 
4. R. K. NESBET, J. Chem. Phys., 43 (1965), 311. 
5. Reference 1, p. 143. 
6. I. S. S~KOLNIKOFF AND E. S. SOKOLNIKOFF, “Higher Mathematics for Engineers and Physicists,” 

McGraw-Hill, 1941, p. 163. 
7. D. H. WEINSTEIN, Proc. Nat. Acad. SC., 20 (1934), 529. 
8. Reference 1, 411. p. 
9. Reference 1, 292-328. p. 

5W4/4-3 


